Modulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase.

نویسندگان

  • K De Fea
  • R A Roth
چکیده

Increased serine phosphorylation of insulin receptor substrate-1 (IRS-1) has been observed in several systems to correlate with a decreased ability of the insulin receptor to tyrosine-phosphorylate this endogenous substrate and to inhibit its subsequent association with phosphatidylinositol 3-kinase. In the present studies we have examined the potential role of the mitogen-activated protein (MAP) kinase in the increased serine phosphorylation of IRS-1 observed in human embryonic kidney cells treated with an activator of protein kinase C, phorbol 12-myristate 13-acetate. First, recombinantly produced kinase was shown to phosphorylate intact IRS-1 in a way that decreased the ability of isolated insulin receptor to phosphorylate the tyrosines recognized by the SH2 domains of the phosphatidylinositol 3-kinase. Second, an inhibitor of MAP kinase activation, PD98059, blocked the phorbol 12-myristate 13-acetate-induced inhibition of the insulin-stimulated increase in IRS-1 associated phosphatidylinositol 3-kinase. Third, activation of MAP kinase in intact cells via a regulatable upstream kinase, a RAF:estrogen receptor construct, could also inhibit the insulin-stimulated increase in IRS-1-associated phosphatidylinositol 3-kinase. Fourth, an in gel kinase assay showed that MAP kinase was the primary renaturable kinase in cell extracts capable of phosphorylating an IRS-1 fusion protein. Finally, IRS-1 was found to associate in coprecipitation studies with endogenous MAP kinase. These studies implicate MAP kinase as one of the kinases capable of phosphorylating and regulating IRS-1 tyrosine phosphorylation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of feedback regulation of insulin receptor substrate-1 phosphorylation in primary adipocytes.

Serine and threonine phosphorylation of IRS-1 (insulin receptor substrate-1) has been reported to decrease its ability to be tyrosine-phosphorylated by the insulin receptor. Insulin itself may negatively regulate tyrosine phosphorylation of IRS-1 through a PI3K (phosphoinositide 3-kinase)-dependent feedback pathway. In the present study, we examined the regulation and role of IRS-1 serine phosp...

متن کامل

The Drosophila insulin receptor activates multiple signaling pathways but requires insulin receptor substrate proteins for DNA synthesis.

The Drosophila insulin receptor (DIR) contains a 368-amino-acid COOH-terminal extension that contains several tyrosine phosphorylation sites in YXXM motifs. This extension is absent from the human insulin receptor but resembles a region in insulin receptor substrate (IRS) proteins which binds to the phosphatidylinositol (PI) 3-kinase and mediates mitogenesis. The function of a chimeric DIR cont...

متن کامل

Lysophosphatidylcholine Inhibits Insulin-Induced Akt Activation Through Protein Kinase C- in Vascular Smooth Muscle Cells

To better understand the intracellular signaling mechanism that causes the association of insulin resistance and hyperlipidemia with cardiovascular diseases, we specifically looked at the ability of lysophosphatidylcholine (lysoPC) to inhibit the Akt activation induced by insulin in cultured rat aortic vascular smooth muscle cells. LysoPC inhibited the insulin-induced phosphorylation of Akt at ...

متن کامل

Lysophosphatidylcholine inhibits insulin-induced Akt activation through protein kinase C-alpha in vascular smooth muscle cells.

To better understand the intracellular signaling mechanism that causes the association of insulin resistance and hyperlipidemia with cardiovascular diseases, we specifically looked at the ability of lysophosphatidylcholine (lysoPC) to inhibit the Akt activation induced by insulin in cultured rat aortic vascular smooth muscle cells. LysoPC inhibited the insulin-induced phosphorylation of Akt at ...

متن کامل

Differential regulation of insulin receptor substrate-2 and mitogen-activated protein kinase tyrosine phosphorylation by phosphatidylinositol 3-kinase inhibitors in SH-SY5Y human neuroblastoma cells.

Insulin-like growth factor I (IGF-I) is a potent neurotropic factor promoting the differentiation and survival of neuronal cells. SH-SY5Y human neuroblastoma cells are a well characterized in vitro model of nervous system growth. We report here that IGF-I stimulated the tyrosine phosphorylation of the type I IGF receptor (IGF-IR) and insulin receptor substrate-2 (IRS-2) in a time- and concentra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 272 50  شماره 

صفحات  -

تاریخ انتشار 1997